SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech I Year II Semester Regular Examinations October-2020

PROBABILITY & STATISTICS

(Common to CSE & CSIT)

Time: 3 hours

(Answer	all	Five	Units	5	X	12	=	60	Ma	rks))

UNIT-I

- 1 a Determine (i)P(B/A) (ii)P(A/B^C) if A and B are events with P(A) = 1/3, P(B) = 1/4, 6M P(AUB) = 1/2
 - b In a certain town 40% have brown hair, 25% have brown eyes and 15% have both 6M brown hair and brown eyes. A person is selected at random from the town.i) If he has brown hair, what is the probability that he has brown eyes also?
 - ii) If he has brown eyes, determine the probability that he does not have brown hair?

OR

2 A random variable X has the following probability function

Х 0 1 2 3 4 5 6 7 2K 2K 3K \mathbf{K}^2 $2K^2$ $7K^2 + K$ P(X)0 Κ

Determine (i) K (ii) Evaluate $P(X \ge 6)$ and $P(0 \le X \le 5)$ (iii) if $P(X \le K) > 1/2$, find the minimum value of K (iv) variance.

UNIT-II

- **3** a The mean and variance of a binomial distribution are 4 and 4/3. Find P(X \ge 1).
 - **b** If X is a Poisson variant such that $3 P(X = 4) = \frac{1}{2}P(X = 2) + P(X = 0)$ find

(i) mean (ii)) $P(X \le 2)$

4 Derive mean and variance of Normal distribution.

UNIT-III

OR

5 a Find arithmetic mean to the following data

Х	1	2	3	4	5
F	5	8	10	12	6

b Find the median to the following data

	U						
Class Intervals	40-50	50-60	60-70	70-80	80-90		
Frequency	5	12	23	8	2		
OP							

6 a Calculate the correlation coefficient for the following heights(in inches) of **6M** fathers(X) and their sons(Y)

``	,								
	Х	65	66	67	67	68	69	70	72
	Y	67	68	65	68	72	72	69	71
		-	-	-					

b From the following regression equations 20X - 9Y = 107, 4X - 5Y = -33, calculate **6M** $\overline{X}, \overline{Y}$ and r.

12M

6M

6M

12M

6M

6М

6M

Max. Marks: 60

9

UNIT-IV

7 **a** Fit a second degree polynomial to the following data by method of least squares

Х	0	1	2	3	4	
Y	1	1.8	1.3	2.5	6.3	
= ax + b for the following data						

b	Fit a straight line $y = ax + b$ for the following data										
		x 6 7 7 8 8 8 9 9 10									10
		У	5	5	4	5	4	3	4	3	3
	OR										

- 8 a It is claimed that a random sample of 49 tyres has a mean life of 15200 km. This sample was drawn from a population whose mean is 15150 kms and standard deviation of 1200 km. Test the significance at 0.05 level.
 - b Experience had shown that 20% of a manufactured product is of top quality. In one day's production of 400 articles only 50 are of top quality. Test the hypothesis at 0.05 levels.

UNIT-V

Sample	Size	Sample Mean	Sum of squares of deviations from the mean
1	10	15	90
2	12	14	108

Test whether the samples came from the same normal population.

Two random samples reveal the following results:

OR

- 10 a Find the maximum difference that we can expect with probability 0.95 between the mean of samples of sizes 10 and 12 from a normal population if their standard deviations are found to be 2 and 3 respectively.
 - b The number of automobile accidents per week in a certain community are as follows: 12, 8, 20, 2, 14, 10, 15, 6, 9, 4. Are these frequencies in agreement with the belief that accident conditions were the same during this 10 week period.

*** END ***

6M

12M

6M

.